L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer.

نویسندگان

  • Yu Han
  • Véronique Lefebvre
چکیده

The Sry-related high-mobility-group box transcription factor Sox9 recruits the redundant L-Sox5 and Sox6 proteins to effect chondrogenesis, but the mode of action of the trio remains unclear. We identify here a highly conserved 359-bp sequence 10 kb upstream of the Agc1 gene for aggrecan, a most essential cartilage proteoglycan and key marker of chondrocyte differentiation. This sequence directs expression of a minimal promoter in both embryonic and adult cartilage in transgenic mice, in a manner that matches Agc1 expression. The chondrogenic trio is required and sufficient to mediate the activity of this enhancer. It acts directly, Sox9 binding to a critical cis-acting element and L-Sox5/Sox6 binding to three additional elements, which are cooperatively needed. Upon binding to their specific sites, L-Sox5/Sox6 increases the efficiency of Sox9 binding to its own recognition site and thereby robustly potentiates the ability of Sox9 to activate the enhancer. L-Sox5/Sox6 similarly secures Sox9 binding to Col2a1 (encoding collagen-2) and other cartilage-specific enhancers. This study thus uncovers critical cis-acting elements and transcription factors driving Agc1 expression in cartilage and increases understanding of the mode of action of the chondrogenic Sox trio.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer.

SHOX (short stature homeobox-containing gene) encodes a transcription factor implicated in skeletal development. SHOX haploinsufficiency has been demonstrated in Leri-Weill dyschondrosteosis (LWD), a skeletal dysplasia associated with disproportionate short stature, as well as in a variable proportion of cases with idiopathic short stature (ISS). In order to gain insight into the SHOX signallin...

متن کامل

A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene.

Transcripts for a new form of Sox5, called L-Sox5, and Sox6 are coexpressed with Sox9 in all chondrogenic sites of mouse embryos. A coiled-coil domain located in the N-terminal part of L-Sox5, and absent in Sox5, showed >90% identity with a similar domain in Sox6 and mediated homodimerization and heterodimerization with Sox6. Dimerization of L-Sox5/Sox6 greatly increased efficiency of binding o...

متن کامل

The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis.

SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic gro...

متن کامل

Transcriptional activation of cartilage oligomeric matrix protein by Sox9, Sox5, and Sox6 transcription factors and CBP/p300 coactivators.

The gene for cartilage oligomeric matrix protein (COMP) encodes a noncollagenous matrix protein that is expressed predominantly in cartilage. COMP gene expression is deficient in the Sox9-null mouse, but the molecular mechanism remains unknown. We have previously delineated a 30-bp negative regulatory element (NRE) and a 51-bp positive regulatory element (PRE) in the regulatory region of the CO...

متن کامل

Cartilage development requires the function of Estrogen-related receptor alpha that directly regulates sox9 expression in zebrafish

Estrogen-related receptor alpha (ESRRa) regulates a number of cellular processes including development of bone and muscles. However, direct evidence regarding its involvement in cartilage development remains elusive. In this report, we establish an in vivo role of Esrra in cartilage development during embryogenesis in zebrafish. Gene expression analysis indicates that esrra is expressed in deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 16  شماره 

صفحات  -

تاریخ انتشار 2008